Metagenomics for etiologic agent discovery

Matthew Ross

Department of Molecular Virology and Microbiology
Alkek Center for Metagenomics and Microbiome Research
Baylor College of Medicine
Houston, TX

Alkek Center for Metagenomics and Microbiome Research

- Facilitate/support metagenomics studies around the country.
 - Currently involved in 60+ collaborative projects
- Develop new projects aimed at deciphering host/microbe interactions and translating results to the clinic
- Provide infrastructure/expertise to explore host-microbe interactions
- Drive technology and analytical development to improve metagenomic capabilities
 - Collaborate with BCM Human Genome Sequencing Center

A Metagenomcis Approach

cDNA library generation

Considerations

- Sample purification techniques lead to sample loss.
- Combat high background (host) with deeper sequencing

Diseases of suspected infectious etiology

- Kawasaki disease
- Type 1 Diabetes
- Fevers of unknown origin
- Sclerosing cholangitis
- Brainerd diarrhea
- Polymyositis
- Polyarteritis nodosa
- Wegener's granulomatosus
- Behçet's syndrome
- Goodpasture's syndrome
- Takayasu's arteritis
- Eosinophilic pustular folliculitis

- Sweet's syndromeType 1
 Diabetes
- Kikuchi's disease
- Chronic fatigue syndrome
- Idiopathic pulmonary fibrosisPolymyositis
- Idiopathic pneumonia syndrome
- Still's disease
- MalakoplakiaBehçet's syndrome
- Nephrolithiasis
- Chronic culture-negative prostatitis

Infection during chemotherapy

 Our approach: 16S sequencing on blood collected from chemotherapy patients with suspected bacterial infection

Efficacy

16S generated for29 blood samples

Compared top OTU with reported pathogen

http://www.peterspain.co.uk/2012/02/07/pre-diabetes/

- Most abundant OTU matches traditionally identified pathogen.
- 16S only specific enough to match at the family level.
- Traditional methods identified gamma hemolytic strep, 16S sequencing found staph.

Current Activity

- We are generating sequence for 40+ blood samples from patients where an infectious agent was not identified by traditional methods
- Identify organisms responsible for infection
 - Are these patients being infected by one or a few opportunistic pathogens?
 - Develop cheap diagnostic tests.

Kawasaki disease (KD)

- Affects mainly children (6mo-5yrs) of Japanese or Korean descent
- Important cause of acquired heart disease
- Typically treated with IgG and aspirin
- What causes Kawasaki Disease?
 - Infectious agent?
 - Seasonal peaks, Acute onset, Self-limited, increased susceptibility of a particular age group (toddlers), defined epidemics
 - Genetic predisposition?
 - High recurrence within families (10-15 times greater probability)
 - Incidence rates determined by race and not geographical location

www.childrenshospital.org/clini calservices/site468/mainpages s468p6.html

KD Samples

- Nasal washes:
 - 22 KD patients
 - 10 non-KD controls

- Processing:
 - Pooled into 2 groups
 - Random primed cDNA
 - Sequenced on 454

454 sequencing of cDNA

Non-KD controls

KD Patients

- Two viruses appear to be differentially present.
 - Direct PCR of individual samples showed one of the viruses equally present in both controls and patients.
 Currently testing the samples for the second virus.

Type 1 diabetes

- Results from autoimmune destruction of pancreatic beta cells
- Strong evidence for environmental trigger
 - Human enterovirus B species have been closely correlated
- We are working with nPOD and other groups to correlate these observations to metagenomic data.

Limit of Detection

Able to detect ~1 PFU or lower

Current Activity

- Currently processing:
 - Pancreas
 - Spleen
 - Lymph node
 - PBMCs
- Testing various methods of depleting human RNAs.
- Screening all results for evidence of viral infection.

Why this approach is promising

- No requirement for culture or prior knowledge of the etiologic agent
- Same approach can be applied to many different types of diseases.
- Success stories:
 - Novel corona-like virus associated with diarrhea.
 - Rapid characterization of the H1N1 genome
 - Novel arena virus likely responsible for posttransplant death

Summary

- Metagenomics holds great promise for contributing to human health studies
- Fast, sensitive, sequence-independent and culture-independent
- Already lead to the discovery of dozens of novel viruses in the past decade.

Why study the human microbiome?

- Bacterial Cells : Human Cells = 10:1
 - Bacterial genes : Human genes = 100:1
- Microbial genomes encode functions beneficial to humans
 - Production of Vitamins, e.g. Vitamin K2
 - Digestion of complex polysaccharides (plants)
- Microbiota occlude pathogens
 - Niches and food
- Impacts immune system
 - Drives neonatal immune system development
 - UPDATE*** Provides a "sparring partner" for immune system (in gut)

GLOSSARY

- **Microbiome:** The entire collection of bacteria, viruses, and fungi that naturally occupy various niches on or in a given environment.
- Human Microbiome: The entire collection of bacteria, viruses, and fungi that naturally occupy various niches on or in the human body.
- Metagenomics: Use of modern technology to study communities of microbes (microbiomes) directly in their natural environments, without the need for isolation or cultivation of the individual organism.

16S analysis

Viral Analysis

Organismal Census